Геометрия
- Высота параллелограмма
- Высота пирамиды
- Высота равнобедренного треугольника
- Высота равностороннего треугольника
- Высота ромба
- Высота трапеции
- Высота треугольника
- Высота цилиндра
- Диагонали параллелограмма
- Диагонали ромба
- Диагонали трапеции
- Диагональ квадрата
- Диагональ куба
- Диагональ прямоугольника
- Диагональ прямоугольного параллелепипеда
- Боковое ребро параллелепипеда
- Ребро куба
- Сторона квадрата
- Сторона треугольника
- Стороны параллелограмма
- Стороны прямоугольника
- Стороны прямоугольного треугольника
- Стороны равнобедренного треугольника
- Стороны равностороннего треугольника
- Стороны ромба
- Правильный многоугольник
- Таблица косинусов
- Таблица котангенсов
- Таблица синусов
- Таблица тангенсов
- Углы параллелограмма
- Углы прямоугольного треугольника
- Углы равнобедренного треугольника
- Углы ромба
- Углы треугольника
Алгебра
- Векторное произведение векторов
- Длина (модуль) вектора
- Компланарность векторов
- Образуют ли вектора базис
- Проекция вектора на ось
- Разложение вектора по базису
- Середина отрезка
- Скалярное произведение векторов
- Сложение и вычитание векторов
- Смешанное произведение векторов
- Сумма векторов
- Угол между векторами
Арифметика
Математика является одной из древнейших наук в мире. Что именно изучает эта наука и каково ее отношение к окружающему миру путем лишь перечисления составляющих ее частей, будет далеко не точно. Школьники начальных классов, изучающих арифметику, скажут, что математика изучает числа и правила действий над ними. Школьники старших классов в определение математики включат алгебру, геометрию, изучение функций, переход к пределу, понятия производной и интеграла. Студенты ВУЗов расширят определение математики, добавив сюда теорию вероятностей и теорию множеств, программирование для ЭВМ и дифференциальное исчисление, математическую статистику и математическую логику и т.д. Если другие науки изучают предмет и явления природы, то для математики определяющее значение имеет не материальный предмет, а применяемый метод исследования, структурные свойства исследуемого объекта. Следует однако заметить, что большая часть математических теорий, понятий появилась на основе реальных явлений и процессов.
Арифметика
Следует заметить, что арифметика появилась в древнейшие времена, когда появилась потребность считать предметы, вести счет времени, делить добычу. Если вначале счет велся в пределах единиц, реальная действительность расширила объем чисел до десятков, сотен и т. д., возникла необходимость в сложении, вычитании, делении и умножении чисел. Прошло еще немало времени пока расширилось понятие числа до 0, дробных единиц, отрицательных чисел, появились способы записи чисел и действий над числами. Много времени искусство правильно и быстро осуществлять действия над любыми числами считалось главной задачей арифметики. Сегодня с помощью онлайн калькулятора можно в считанные секунды совершать любые арифметические действия с большими многозначными числами.
Алгебра
Общие действия над разными величинами, решение уравнений, непосредственно связанных с данными действиями, изучает одна из важнейших составных частей математики — алгебра. В своем знаменитом трактате узбекский математик 9-го века Мухаммед ал-Хорезми вывел общие правила, применяемые при решении уравнений 1-й степени, где «аль-джебр» означает перенос членов уравнения со знаком «-» из одной его части в другую, изменив знак на «+». Свое название алгебра получила от слова «аль-джебр», что переводится как «восполнение» и считается одним из приемов преобразования уравнений. Если арифметика изучает свойства и действия только над числами, то алгебра изучает эти же действия и в отношении других математических величин (многочленов, векторов, функций и т. д.), обозначая их буквами и знаками. Алгебра изучает лишь общие свойства величин, независимо от их значений. С помощью онлайн калькулятора вы сможете решать уравнения и системы уравнений любой степени сложности, решать неравенства, системы неравенств, вычислить интегралы, производную функции, предел функции.
Геометрия
Еще одной из важнейших и древнейших математических наук является геометрия, которая изучает пространственные формы, их отношения и их обобщения. Геометрия возникла приблизительно пять тысяч лет назад и была тесно связана с практической деятельностью людей. С древних времен у людей возникла необходимость в измерении расстояния, различных предметов, земельных участков, построек и т. д. В переводе с греческого «геометрия» означает «землемерие». В книге «Начала» древнегреческий ученый Евклид уже в третьем веке до н. э. сумел подытожить накопленные геометрические знания и представил ее полное аксиоматическое изложение. Евклидова геометрия считалась единственно возможной вплоть до 19-го века, пока математиками не было установлено существование различных «геометрий». Современная геометрия дополнилась новыми направлениями, которые сближают ее с теорией чисел или с математическим анализом, или с квантовой физикой. В геометрию входят два больших раздела. Один из них, который изучает фигуры на плоскости (треугольники, прямоугольники, другие четырехугольники и многоугольники, окружности), называется планиметрия. Фигуры в трехмерном пространстве (пирамида, шар, куб, призма, цилиндр и т. д.) изучает стереометрия. Трудно оценить практическое значение геометрии, с которой мы сталкиваемся практически на каждом шагу (строительство, интерьер, дачный участок и т. д).