Уравнение окружности

Окружность — геометрическое место расположения множества точек, каждая из которых равноудалена от центра окружности. Отрезок, соединяющий любую точку окружности с ее центром, называется радиусом окружности. Величина радиуса равняется половине диаметра — отрезку, который соединяет две точки окружности, проходя через точку ее центра.

Если в координатную плоскость поместить окружность с радиусом R и центром в точке А, а координаты центра обозначим (а;b), координаты любой точки окружности (х;у), то уравнение окружности будет иметь вид: (х — а)2 + (у — b)2 = R2.

Уравнением окружности называется уравнение, в котором радиус окружности, возведенный в квадрат, равняется сумме квадратов разностей между координатами любой точки окружности и координатами ее центра.

Если центр окружности лежит в точке начала координат, квадрат радиуса окружности равняется сумме квадратов координат любой точки окружности. Уравнение будет иметь вид: х2 + у2 = R2.

Зная координаты точки центра и любой точки окружности можно вычислить длину радиуса, что позволит при необходимости рассчитать длину окружности и площадь круга — плоскости, расположенной внутри окружности.
l = 2π • r;
S = 2π • r2,
где l — длина окружности; r — радиус окружности; S — площадь круга; Пи — 3,14.

Воспользовавшись онлайн калькулятором вы сможете быстро рассчитать уравнение окружности, найти радиус окружности. Для этого потребуется лишь ввести заданные координаты точек.

Введите координаты трех точек
A (X,Y)
B (X,Y)
C (X,Y)
Точка Центра

Радиус

Уравнение окружности