Формула Муавра. Возведение в степень комплексного числа

Числа вида а + bi, где а и b — действительные числа, а i — число особого рода, квадрат которого равен «–1», называются комплексными числами.

Чтобы возвести комплексное число в квадрат, можно воспользоваться формулой сокращенного умножения: , где i в квадрате заменяют на -1.

Чтобы возвести комплексное число в 6-ю, 10-ю или другую степень используют тригонометрическую форму комплексного числа и формулу Муавра: (соs ф + isin ф) в n-ой степени = соs (nф) + isin (nф).

Если комплексное число, представленное в тригонометрической форме: возвести в натуральную степень n, получим:

Формула получена согласно правил умножения комплексных чисел: .

Для возведения числа z в целую степень n, представим его в показательной форме: z = |z|•е, после чего возведем модуль в степень, а аргумент увеличиваем в n раз Формула Муавра.

Если комплексные числа представлены в показательной форме: z1 = |z1| • е iф1, z2 = |z2| • еiф2, то формула возведения в степень будет иметь вид: Формула Муавра

С помощью онлайн калькулятора можно быстро возводить комплексные числа в степень.

z = + i
n =
Количество знаков после разделителя дроби в числах:



Понравилась статья? Поделиться с друзьями:
Adblock
detector