Главная / Геометрия / Угол / Углы параллелограмма

Углы параллелограмма

Параллелограмм представляет собой четырехугольник, противоположные стороны которого параллельны и равны друг другу. Два угла, прилежащие к одной стороне параллелограмма, в сумме составляют 180°. Если известен один угол параллелограмма, несложно найти смежный с ним угол путем вычитания из 180° величину известного угла.

α = 180°-β

Таким образом, мы нашли значения всех углов, т.к. известно, что противолежащие углы параллелограмма равны.

Отрезок, проведенный из двух противоположных вершин параллелограмма, является его диагональю. Если заданы стороны и диагональ, можно определить углы параллелограмма. Диагональ делит параллелограмм на два одинаковых треугольника. Основанием треугольника является диагональ, боковыми сторонами — смежные стороны параллелограмма. Для определения угла используем теорему косинусов, по которой квадрат стороны треугольника (в нашем треугольнике это диагональ) равен сумме квадратов двух его сторон, образующих искомый угол, плюс удвоенное произведение этих сторон на косинус угла. Отсюда, косинус искомого угла равен сумме квадратов смежных сторон (а, b) минус квадрат третей стороны треугольника (в нашем случае — диагонали), противолежащей искомому углу, и все это деленное на удвоенное произведение смежных сторон:

d2 = a2 + b2 + 2ab cos (α)

cos (α) = (a2 + b2 — d2) / 2ab

,
где а, b — стороны параллелограмма, d — диагональ.
Воспользовавшись таблицей косинусов находим величину искомого угла. После чего находим смежный с ним угол.

Рассчитать углы параллелограмма зная стороны и диагональ

Сторона параллелограмма a
Сторона параллелограмма b
Диагональ параллелограмма d
Угол α (градус)
Угол β (градус)